An Optimized Neural Network Classifier for Automatic Modulation Recognition

نویسندگان

  • Li Cheng
  • Jin Liu
چکیده

Automatic modulation recognition which is one of the key technologies in no-cooperative communications has extensive application prospects in civilian and military fields. The design of classifier played a decisive role in recognition results. The classifier based on back propagation (BP) neural network is better in the existing methods. However, the traditional back propagation neural network (BPNN) has some well-known disadvantages. This study investigates the design of a classifier for recognition of six common digital modulations. This classifier based on BP neural network trained by improved particle swarm optimization (PSO) which is applied as a local search algorithm to find the optimal weights and thresholds of BPNN. The simulation experiment results demonstrate that the proposed classifier has higher recognition accuracy than other classifiers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimensionality Reduction and Improving the Performance of Automatic Modulation Classification using Genetic Programming (RESEARCH NOTE)

This paper shows how we can make advantage of using genetic programming in selection of suitable features for automatic modulation recognition. Automatic modulation recognition is one of the essential components of modern receivers. In this regard, selection of suitable features may significantly affect the performance of the process. Simulations were conducted with 5db and 10db SNRs. Test and ...

متن کامل

Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...

متن کامل

Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...

متن کامل

Automatic Modulation Classifier Using Artificial Neural Network Trained by PSO Algorithm

The back propagation (BP) neural networks have been commonly used for automatic modulation recognition since the late 1990s. However, the back propagation algorithm easily falls into local minimum and the network learning is sensitive to initial weight values which usually determined by experience. The particle swarm optimization (PSO) algorithm is a global heuristic searching technology. By co...

متن کامل

Blind signal-type classification using a novel robust feature subset selection method and neural network classifier

Automatic modulation recognition plays an important role for many novel computer and communication technologies.Most of the proposed systems can only identify a few kinds of digital signal and/or low order of them. They usually require high levels of signal-to-noise ratio. In this paper, we present a novel hybrid intelligent system that automatically recognizes a variety of digital signals. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013